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Summary. The time-dependent formulation for nuclear dynamics in molecules 
induced by electronic excitation in a radiation field is reviewed. The present 
discussion is especially aiming at extracting physical observables for photodisso- 
ciation and highlighting the connection to the nuclear dynamics of the process. 
The total dissociation probability, the probability associated with the formation 
of a given chemical product, and the probability that this product shows up in 
a specified quantum state is considered. The results are given as a function of the 
form of the light pulse, and special attention is given to situations where the 
duration of the light pulse is very short or very long. 
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I. Introduction 

The time-dependent formulation for nuclear dynamics induced by electronic 
excitation in a radiation field was introduced more than a decade ago [1]. This 
description gives the exact quantum mechanical counterpart of the Franck- 
Condon principle - a qualitative picture which states that at the completion of 
an electronic transition in a molecule the nuclei are still in their original 
positions, only after this excitation the nuclei will readjust, i.e., nuclear dynamics 
will ensue. Furthermore, the time-dependent formulation [1] gives theoretical 
expressions for observables which can be formulated in such a way that the 
simple picture associated with the Franck-Condon principle shows up in the 
equations. These results are based on a theoretical description which use 
standard t h e o r y -  wave functions which assumes an adiabatic separation be- 
tween electronic and nuclear motion and first order perturbation theory for the 
light-matter interaction. 

After the publication of the paper by Kulander and Heller [ 1] many papers 
have used and expanded on the foundation given in that paper (see, e.g., [2-17] 
and references therein), but the whole field is strongly connected to the pioneer- 
ing work of E. J. Heller. The time-dependent approach has turned out to be very 
valuable. This is partly due to the intuitively appealing description which is not 
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provided by standard formulations in terms of stationary states and partly due 
to the ease of making contact with (semi-)classical descriptions and pictures. In 
addition, in many situations, computational efficiency is provided by the time- 
dependent approach. 

We present here a detailed review and update on the basic theoretical 
concepts associated with the time-dependent formulation for nuclear dynamics 
induced by electronic excitation. In the process of doing that, it is hoped that 
various aspects of the theory will be clarified. The discussion is aiming at 
photodissociation dynamics - the basic theoretical description of other types of 
nuclear dynamics due to electronic excitation are, however, closely related. Thus, 
the theory in Sects. 2 and 3 are, e.g., formaUy identical to the situation where 
spectroscopy between two bound electronic states is considered. 

Why study photofragmentation? 
Photofragmentation is chemical bond breaking due to absorption of radiation. 
The primary electronic transition in the process takes, typically, place in the 
ultraviolet or visible region of the spectrum. 

There are several good reasons for studying this process. From the reaction 
dynamics point of view, it offers a very good opportunity to study dynamics of 
chemical bond breaking. In bimolecular collisions, the impact parameter cannot 
be controlled experimentally. In photofragmentation, on the other hand, the 
reaction conditions are as well-defined as possible - the initial state is a bound 
molecule with a weU-defined geometry, the initial quantum state can be selected 
and the energy transferred to the molecule via the photon can be controlled with 
very high precision using laser light. Thus, photofragmentation offers the best 
opportunity for a "clean" comparison between theory and experiment. 

Furthermore, photofragmentation is an important chemical reaetion per se. It 
plays an important role, expecially, in the chemistry of the atmosphere. The most 
well-known of these reactions is probably the photofragmentation of ozone in 
the stratosphere: 

03 + ha) ~O2 + O (1) 

It shields the earth from ultraviolet solar radiation for wavelengths less than 
about 3000 ~. A number of reactions occur due to pollution of the atmosphere, 
e.g., photofragmentation of chlorofluorocarbons (CFC gases): 

CC13F -1- hco ---* .CC12F + C1. (2) 

This reaction can create problems because the chlorine radical will react with 
ozone to yield oxygen and C10 thereby removing ozone. 

What are the questions in photofragmentation? 
The photofragmentation of a triatomic molecule contains all the essential features 
of photofragrnentation. For a triatomic molecule, the general situation is: 

~ A + Be(tal 
--+ ~ B  + AC(m) (3) 

ABC(n) + ha) 
] C + AB(m) 
I 

L A + B + C  

where all product states can be accessible simultaneously at a given photon 
energy ha). We want to know exactly what happens in the transition frorn reactants 
to products in Eq. (3). This includes questions like: 
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(a) Probe the process of bond breaking 
Can we learn about the details of the bond breaking from measurements in 
frequency domain? - can we do measurements in real-time and learn about the 
dissociation time, i.e., how long it takes to go from the left to the right side in 
Eq. (3)? What is the effect of changing the characteristics of the light - like 
changing the frequency and perhaps the duration of the light pulse? 

(b) Predict the outcome of the reaction 
Can we predict the total probability of the reaction?- can we predict the 
probability associated with the transformation in Eq. (3), i.e., the probability of 
transforming the triatomic molecule ABC(n), in a given rotational, vibrational, 
and electronic state (denoted by n), into a given set of fragments on the 
right-hand side, again with complete specification of rotational, vibrational, and 
electronie stares (denoted by m) as weU as a given magnitude and direction of the 
relative momentum of the fragments? - can we predict how the excess energy in 
the photofragments is distributed between the rotational, vibrational, transla- 
tional, and electronic degrees of freedom? 

(c) Test of theoretical approaches 
Out intuition about dynamics is strongly connected to classical mechanics - can 
the dynamics of the process be described by semi-classical mechanics? 

The questions above are all related to understanding the dynamics of a naturally 
occurring process. Another type of question is: 

(d) Control of reactions: Selective bond breaking 
Can we control the outcome of the reaction and select which product is going to 
be formed? - how can control be achieved? 

We will diseuss the answers to questions like these in the sections which 
follow. Only basic theoretical concepts are considered. Numerical techniques and 
applications to specific systems are not discussed. 

2. Quantum dynamics of moleeular photofragmentation 

We consider a molecule which interacts with a radiation field. An adequate 
description can be given by considering the molecule to be described by quantum 
mechanics and a classical description of the radiation fiel& We let I ~(t))  denote 
the state vector of our molecule at time t. In the Schrödinger picture, the time 
evolution is given by [18]: 

ih t? [~(t)) = (/qM +/qt(t)) [Tt(t)) (4) 
et 

where /qM is the molecular Hamiltonian given by: 

/qM"Z'-- Tn'J- Te'~- V (5) 

Th, ~ile, and V are the kinetic energy of the nuclei, the kinetic energy of the 
electrons, and Coulomb interaction between all the electrons and nuclei, respec- 
tively, and/ql(t) is the Hamiltonian for the interaction with the radiation field, 
which can be expanded in the form [19]: 

/qz(0 =/qe»(t) + ÆeQ(t) +/qM»U) + ' ' '  (6) 
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-QED(t), -QEo(t), and -QMD(t) are the electric-dipole interaction, the electric- 
quadrupole interaction, and the magnetic-dipole interaction, respectively. The 
electric-dipole term is the dominating term in Eq. (6). Other contribufions to 
-Ql(t) are rauch smaller and, normally, need only to be considered for the weak 
transitions which are electric-dipole forbidden. 

2.1. Time-dependent approach, wave packets 

We let [te M(t)) denote the state vector of the isolated molecule at time t. The 
time evolution is given by: 

ih ~ [ h uM(t)) -- -QM] tPM(t)) (7) 
0t 

Time-evolution operators are defined by: 

I ~M(t) ) = ÜM(t, to)[7~M(to)) (8) 

and 

[~ ( t ) )  = Ü(t, t0) 17'(t0)) (9) 
for the free molecule and the molecule in the radiation field, respectively. We 
insert these expressions into the time-dependent Schrödinger equations, Eqs. (7) 
and (4), and get the following equations for the time-evolution operators: 

ih 8ÜM(t'st to) _ -QMÜM(t, to ) (10) 

and 

ih dÜ(t, to) _ (-QM + IQi(t))Ü(t, to) 
dt 

Using these equations, we get: 

i 
d {ÜtM(t ' to)Ü(t ' to)} = - ~  ÜtM(t, to)-Qi(t)Ü(t, to) 
dt 

and integration gives: 

Ü(t, to) = ÜM(t, to) - ~  dt'ÜM(t, t')-Qt(t')Ü(t', to) 
o 

Iteration gives: 

Ü(t, to) = ÜM(t, to) + Ü(')(t, to) + Ü(2)(t, to) + . . .  

where 

ÜM( t, to) = exp( -- i-QM( t -- to) /h) 

i dt'ÜM(t, t')-Ql(t')ÜM(t', to) Ü(')(t, to)= - ~  o 

i ~t dt'ÜM(t, t')I~i(t')Ü(1)(t ', to) O(~»(t, to)= - ~  o 

(11) 

(12) 

(13) 

(14) 

(15) 
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In photofragmentation the initial state is a bound state of a molecule. 
Interaction with the radiation field creates a new state given by: 

Ü(t, to) I ~M(to)5 = ÜM(t, to) I ~~ ( to ) )  + Ü(')(t, to) I~M(to)) + "  

= [ ~M(t))  + (7~~(t))  + " "  (16) 

To first order, probabilities of  finding dissociative states can be extracted from 
the vector: 

i f t  dt'ÜM(t, t')tt,(t')Üu(t', to) l ~ u ( t o ) )  (17) [ ~ ~ ) ( t ) ) = - ~  o 

We consider now the explieit representation of Eq. (4) and the subsequent 
results concerning its solution for a prototype molecule with: 

(a) 3 stationary electronic states, 
(b) non-adiabatic eoupling between electronic states 2 and 3, and 
(c) radiative coupling between electronic states 1 and 2. 

The state vector takes the form: 

(q, R[ ~(t)) = z1(R, t)~kl(q; R) + z2(R, t)~'2(q; R) + z3(R, t)~3(q; R) (18) 

where q and R denote the electronic and nuclear coordinates, respectively. ~b~ 
(i = 1, 2, 3)) is an electronic eigenstate: 

(L + V(q; R))¢,(q; R) = E,(R)~k,(q; R) (19) 

The equation is solved for fixed values of R, which plays the role of a parameter 
in the equation. This is indicated by ";" in the equation. The physical motivation 
for this form of the state vector is the fast motion of the electrons as compared 
to the slow motion of  the nuclei. For bound state problems, fast motion is 
connected with large spacing between energy states. Thus, the energy spacing 
between the lowest electronic states is, normally, large and we need to consider 
only a few electronic states. Now we substitute this form of the state vector into 
Eq. (4) and obtain the following explicit representation for the nuclear rnotion in 
the presence of  a radiation field: 

o / r ~ ~ ( t » / - -  0 i~ 2 c23 + ~/~21(,) d1~22(/) [~2(/)) / (20) 

LIz3(t))J 0 C32 ä3/  0 0 IZ3(t))J 
where 

&= L + «,(R) + (g, il L Ig,,) 
h 2 

e « -  (,/,, f f,, I ~,« > - 2 ~ (~,lvs f ~j >-vr (21) 

Æij(t) = (~iIÆÆD(t) [Ißj ) 
and integration in the matrix elements is over all electronic coordinates q. 
Accordingly, the matrix elements are functions of  the nuclear coordinates R. Due 
to the orthonormality of  the electronic eigenstates, the probability of  finding the 
molecule in electronic " i"  at time t given the nuclear position R is simply 
Iz,(n, t)L 2. 
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We assume that electronic state 1 is a bound state of the molecule and that 
the molecule at time to is in this state. In connection with the evaluation of Eq. 
(17), we note that: 

e x p - i  0 /)2 d23 ( t ' - to)/h 
0 C32 fi33 

since for the free molecule, the nuclear motion in electronic state 1 is decoupled 
from the other electronic states, and multiplication with the interaction matrix 
gives: 

--R~'(t ')-R12(t ')!l[exp(-iI41(t '-t°)/h)';(l(t°))- -R21(t') 0 /~22 (t') 0 0 0 

-/~ll (t') exp( -- iI~ 1 (t' - to)/h) I Z, (to) > l 
= /~21(t') exp( - i /~ l ( t '  to)/h)lz,(to)> | (23) 

0 3 
Thus, the physical interpretation of this equation is clear: The interaction with 
the radiation field at time t' transfers amplitude from electronic state 1 to stare 
2. We assume that unbound (dissociative) nuclear motion is possible in electronic 
state 2 and/of 3. The nuclear motion on surfaces 2 and 3, to first order in the 
interaction with the radiation field, is given by: 

[/~21 ( t ' ) e x p ( - i I 1 1 ( t ' - t o ) / h ) l z l ( t o ) )  ] (24) 
x 0 

We choose t o = 0  and consider the situation where I)fi> is a vibrational- 
rotational eigenstate. We let e 1 denote the associated energy. Furthermore, the 
electric field of the radiation field is plane polarized and represented such that: 

~ ~ l ( c )  = < 0 ~ I - ; L  . £ ( c ) h o l >  

= --~2," Ëoa(t') cos ogzt' (25) 

The unspecified form of the envelope function, a(t'), means that short pulse, long 
pulse laser fields, etc. are all under investigation. Thus, we get: 

[I Z~21)(t) >-1 i fo iZ(1)(t) >J = ~ dt' e -i("°Jz + " ) t ' / h a ( t ' )  

x exp(--i [«3~ «231/~3_1(t -- t')/h)[~b(0)> (26) 
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where 

, q ~ ( 0 ) ) - I  Ë°"/~2~~X1(0))] (27) 

Two limiting forms are possible for the envelope function of  the light pulse. 
One such limit is the 6-function limit, defined by: 

where 0 ~< tp <~ t. Thus, a light 
t = tp. From Eq. (26), we get: 

B ]Z~l~(t))] i 
[Z(31)(t)> A = ~-~ exp 

where an overall nonimportant 
neglected. 

a(t') = 6(t '  - tv) (28) 

pulse is suddenly switched on and oft at time 

phase factor, exp( - i(ho9 t + El)t»/h), has been 

6-function limit for the light pulse: 
In this limit interaction with the radiation field, at time t = tp, transfers 
suddenly amplitude from the ground to the excited state surface 2. 
Equation (29) shows that a wave packet, given as the product of the 
electronic transition dipole moment times the initial vibrational- 
rotational eigenstate of  the molecule, is "vertically" excited. 
Subsequent to its creation this wave packet evolves on surface 2 and due 
to the non-adiabatic coupling terms, the wave packet evolution will 
ultimately produce wave packet amplitude on surface 3 as well. 

The other limiting form for the light pulse is the cw (continuous wave) limit, 
defined by: 

a(t') = 1 (30) 

and t ~ ~ .  Equation (26) takes now the form: 

I[Z(21~(t)) -] i I. e-,e,,/h ' 
IZ(31»(t))J = 2-h ,am f0 du e ie'u/~ 

x e x p ( - i [ « 3 / 1 ;  C 2 3 1 u / h )  (31) 

where u = t - t' and Et = hogz + El. 

cw limit for the light pulse: 
The interaction with the radiation field transfers continuously amplitude 
from the ground to the excited state 2. 
Equation (31) shows that wave packets, of the same form as in the 
~-function limit, are "vertically" excited in the time interval from u = 0 
to t. 
Subsequent to creation each wave packet evolve independently. 
The resulting nuclear state is obtained as a superposition of  the wave 
packets. 

Equations (29) and (31) are exact quantum mechanical descriptions of the 
Franck-Condon  principle. In Sects. 3 and 4 where we calculate observables, we 
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will show that these quantities can be expressed in terms of the wave packet 
describing the dynamics created in the 6-function limit (Eq. (29)). 

Equation (31) is a half-Fourier transform of a time-dependent wave packet. 
We can characterize this state more when the non-adiabatic coupling terms can 
be neglected. In that oase we have: 

where [21]: 

i 
Ix~l»(t) > = ~ ,~m e-iE"/~]~ > (32) 

~0 °c3 I~t > = du «w,ù/h exp( - iH2u/h)  149(0)) 

= ihG(Ef- )149(0) > (33) 

and the Green's operator, G(E + ), is given by [20]: 

d(«~- ) = (E, + iE -/~2) -1 

f; i du e ie'"/" exp(-ilTI2u/h) (34) 
h 

where e ~ 0. Thus, disregarding a phase factor the state [~> is created in the cw 
limit. Using Eqs. (33) and (34): 

(El - - / ~ 2 ) 1 ~ )  ~-- ih IÓ(0)> (35) 

Assuming that IÓ > is real, the real and imaginary parts of this equation take the 
form: 

o2h~>r= e,l~>r 
H2I~>; = E~I~>, - h 149(0)> (36) 

The real part, I~) r ,  is accordingly an eigenstate of/-?2 at the energy El. 
In the following sections where we calculate observables, we will show that 

these quantities in the cw limit can be expressed in terms of  the real part of I~ ) .  

2.2. Time-independent approach, stationary scattering states 

It is instructive to have an alternative look at some of the results of the previous 
section in terms of stationary states (see, e.g., [22-24]). In order to keep the 
discussion as simple as possible, we neglect in the present section the non- 
adiabatic coupling terms. The dynamics is, accordingly, confined to the elec- 
tronic state 2. 

Equation (26) takes the form: 

i fo -~(h°~~+«)C/ha(t')exp(--iI212(t t')/h)149(O)) (37) [Z(21)(t)) = ~ dt' e 

The time evolution operator can be written in the form: 

e x p ( - i H 2 ( t - t ' ) / h ) = ~  f dEIE, n ->e-W' t - c ) / "<« ,n - I  (38) 
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where: 

Iq2[E, n -  ) = E[E, n - ) (39) 

The stationary stares can be discrete and continuous- the integration over 
energy in Eq. (38) is understood to be taken as a summation for the discrete part 
of the spectrum, n is a set of quantum numbers which labels the stationary states 
at energy E. The minus sign indicates that we have chosen one particular state 
in this subspace of degenerate states. The precise specification of these states is 
not needed - Eq. (39) suffices for the present discussion. We substitute Eq. (38) 
into Eq. (37): 

IX(21)(t))-----~E (E ,n- ldp)[E,n- )e  -iEt/h dt'e-i(hc°t+«l-E)t'/ha(t')dE (40) 
0 

This equation represents the nuclear wave packet expressed in terms of station- 
ary states. The amplitude associated with the stationary state at energy E is given 
by the Franck-Condon factor (E, n - I Ó ) -  The overall energetic width of the 
state is given by the integral over t', which in turn depends on the envelope 
function of the light pulse. 

Let us again analyse the results for the two limiting forms for this function. 
The ~-function limit, defined by Eq. (28): 

IZ(20(t)>=~ ~ f dE<E,n--[ó>lE, n--> e-tE«-'~ v~ (41) 

where an overall nonimportant phase factor, exp(-i(hco z + e~)tp/h), has been 
neglected. Thus, the state 105) is resolved on the stationary stares of the 
Hamiltonian/1» 

The cw-limit, defined by Eq. (30): 

i ~ dE(E ,  n - ]eß) lE ,  n - )  e -izt/~ at" e -i(h°~, +,1-e)t,/h (42) [z(~°(t) > = 

Now [18]: 

f0 ~ f dt" e -t(e' -e>t./h = rch6(E - Et) + ih~  1/(Et - E )  (43) 

where Et --- he)z + El and N denotes a principal value integral. A comparison with 
Eq. (31) gives: 

fo °° du «izz u/h exp( - itI2u / h ) I c~ ) = ~rh • (El,  n --I(9 )[Et, n -- ) 
i i  

+,,+~ I~+ <+,ù-I+~>IE,ù-> 
x e +(+' - E>'/+I(E t -- E)  dE (44) 

Now assuming that ~b) is real, it is easy to show 

Re du e ~e'"/h exp( - i I12u/h  ) I~ )  = ½ du e mt~/~ exp( - i Iq2u/h  ) IÓ> 
o o  

=~h  E (Et ,  n - - { $ ) l E l ,  n - - ) - = l ~ ) r  (45) 
n 
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where Eq. (38) was used in the last line. The real part of Ifl> is accordingly the 
projection of the initial state, I~b >, on the eigenstates o f / / 2  at energy El. 

3.  T h e  t o t a l  r e a c t i o n  p r o b a b i l i t y  

The total absorption probability, at time t, is: 

P,ot (~,) = <X (21)(t) I X (2')(0 > + <Z (3')(t) ]Z (3')(0 > 

= flz~'(R, t)l = dR + flZ~'(R, t)lZdR 
Using Eq. (26), we get: 

fofo 1 dt" t dt'a(t')a(t") e ie'(' '- c)/h e,o,(O~, ) = ~-~ 

x <q~(0) [ Ü~(t,  t")ÜM(t, t')IqS(0)> 

where: 

(46) 

(47) 

u = t' - t" 

v = t '  + t" (50) 

and the volume element transforms as: 

du dv = 2dt' dt" (51) 

and we get: 

1 dua((v - u)/2)a((v + u)/2) e -«e'"/~ 
f',o,(O~,) = 8-# jo 

t)3J u/h)Iq~(0) > (52) 

We consider now this result in the cw limit for the light pulse, defined by Eq. 
(30). We get: 

P,ot(°)z) = ~ß5 du e'e'"/"<gê(O) lÜM(u, 0)]q~(0)> (53) 
t 

where t --* oo. 
It is instructive to consider an envelope function of the form: (~)1/4 

a(t') = - -  e-~"2 (54) 

We introduce new variables: 

and integration in the matrix element is over the nuclear coordinates, R. Now: 

ÜS( t ,  t ' )Üm(t ,  t') = Üä¢ l (t, t ' )ÜM(t,  t') 

= G,(r', O~~(t, r) 
= ÜM (t", t') (49) 
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which for 7 ~ 0 approach the cw limit. This function is normalized such that 
j-õ la(r ) [2 dt'= 1, i.e., it corresponds to a pulse with a fixed energy. Equation 
(52) takes now the form: 

Pt°t((Dl) --  erf(w/~t)4h2 ~ t du e -~u2/2 eie ,  u /h ( (9 (O) [ÜM(U,  0)[~b(0)) (55) 

where erfis the error function, note that erf(~) = 1. For  t ~ ~ ,  we get: 

1 
t~tot((.O,):~_~f ooß 1 ~1/2 _ \~~-~~71 e-e?/2h2räu(E, -- E~) aE~ (56) 

i.e., the convolution between the Fourier transforms of the light pulse and 
autocorrelation function: 

f~ aü(E,) = du eiE'"/h<~(O) lÜ~,(u, 0)14~(0)> (57) 
oo 

Note that for 7 ~ 0 we get the same result as in Eq. (53) (for the same pulse area). 
It is easy to show that the right-hand sides in Eqs. (53) and (55) are real, as 

they should be. Thus, using: 

(ó(O)[ÜM(U, O)Ié(0»* = (ó(0)  I ÜS(u, 0 ) I é ( 0 »  = (é(O) IÜM ( --u, O)Ié(0» 
(58) 

we get: 

f ' f(u) em'"/h(dp(O)[ÜM(u, O)[dp(O)) du 
t 

= 2 Ne{f  (u) J,u/"<é(O) lÜM(u, 0)[4'(0))} du (59) 

where f(u) is an even real-valued function. This equation shows, in addition, that 
a forward propagation in time, from u = 0 to u = t, is all that is needed. 

Equations (55) and (56) make clear what we mean in terms of physics by the 
cw limit. Y should be so small that the function exp(-7u2/2)  can be considered 
as constant on the time scale where the dynamics inherent in the autocorrelation 
function is important - or formulated in energy space - the width of the light 
pulse should be rauch smaller than the width of the features in the spectrum. 
When this condition is fulfilled, the envelope function in the integral of  Eq. (55) 
can be replaced by unity and the total reaction probability is calculated as a 
Fourier transform of an autocorrelation function. 

The dynamics inkerent in the autocorrelation function is the dynamics of the 
molecule in the excited electronic states. For large u: 

ÜM(u, O)[~(0)> = Ü~(u, O)Iéd(0)> + ÜM(u, 0)Ié»(0)> (60) 

For  simple dissociative motion [~b«(0)) will move away from the Franck-  
Condon region, i.e., the area vertically above the initial stare, and never return. 
The autocorrelation function will decay to zero when [~b«(0)> is out of the 
F ranck-Condon  region. Actually, nodes in the wave packet associated with 
development of momentum will ensure that the decay to zero happens before the 
wave packet is out of the F ranck-Condon  region. It täkes typically much less 
than a vibrational period for the molecule. The exact details depends of  course 
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on the steepness of the potential, the reduced mass of the separating fragments, 
etc. For more complicated dissociative motion parts of Iq~a(0)) can revisit the 
Franck-Condon region a few times. The autocorrelation function will decay to 
zero within the order of a vibrational period for the molecule. For bound motion 
I qSb(0)) will revisit the Franck-Condon region several times. Many recurrences 
in the autocorrelation function will, accordingly, show up. However, a spectrum 
with "experimental" resolution can still be obtained by considering only a 
limited number of these recurrences [4]. 

Definition of cw limit for the total absorption spectrum: 
The envelope function of the light pulse should be constant until the 
dynamics in the autocorrelation function is determined. 
For dissociation this happens typically within a vibrational period. 
For bound motion it takes a few vibrational periods. 
Fast decay of the autocorrelation function implies that the cw limit for 
the light pulse is reached even for a quite short pulse. 

This limit defines the situation where the highest possible resolution in energy is 
obtained. In practice, almost all situations fall within this limit. We calculate the 
total probability from: 

Ptot(e),)=2@fo°°Re{eiE'u/h(Ó(O)lexp(--iI~312122 ~~lu/h)[~b(O))}du (61) 

We observe: 

The total absorption probability in the cw limit is expressed in terms of the 
real-time dynamies of the moleeule as ereated in the 6-function iimit. The 
dynamies is mapped out in the Franek-Condon region due to the overlap 
with the initial state. 
Measurement in the energy (frequeney) -domain of the total absorption 
speetrum is aceordingly a way to ger information about dynamies in the 
Franek-Condon region. 

If we do the half-Fourier transforrn of the time evolved [qS(0)) before taking 
the overlap with the initial stare, we c a n -  in the limit of no non-adiabatic 
coupling- also express Eq. (61) in the form (compare Eq. (33)): 

1 
Ptot(e)z) = ~ (4(0)[N)r  (62) 

i.e., an overlap between the initial state and the real part of I N )  - the stationary 
state created in the cw limit. A more conventional expression in terms of a set of 
stationary states is obtained if we use Eq. (45): 

7C 
P,o,(~o,) = ~ ~ I<qS(0)lE,, n -  >12 (63) 

Note, however, that in the two last expressions for the absorption probability 
the explicit reference to molecular dynarnics is lost. 

4. Final product distributions 

So far we have not explored the fact that the molecule might dissociate and free 
fragments can show up when it is excited electronically. The formulas derived in 
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the previous sections are, in fact, also valid in situations where the molecule does 
not dissociate at all. In the preceding section we calculated the total probability 
associäted with the transition from the left- to the fight-hand side in the 
equation: 

f ABC ABC(n) + ho9 t ~ A + BC B + AC (64) 
C+AB 

A + B + C  
Now we want to calculate the probability associated with the channels which 
corresponds to bond breaking and focus on the chemical composition of the 
fragments as well as more detailed questions concerning the exact quantum state 
of the fragments. 

4.1. Detailed final product distribution 

The state of the fragments in arrangement channel c, is given by: 

Ita[E, i, n~) = E[E, i, n~) (65) 

where /17 is the nuclear Hamiltonian of arrangement channel a [20] and 
electronic state i (--2 or 3). n« is a collective symbol for the vibrational and 
rotational quantum numbers and the momentum vector associated with the 
relative motion of the fragments. Using Eq. (26), we get the following expression 
for the probability of finding fragments in these states: 

e-iEtt'/ha t' <E, 2, n« 
11<E, 3, n,[)~(3,)(t))12]=~ dt' ( )  <E, 3, n« 

xexp(- i [«3/-I ;  «231 _t,)/h)[IcPaÒO)>] 2 
Hs [ (t (66) 

In order to simplify, let us neglect the non-adiabatic coupling terms and 
focus on the nuclear dynamics associated with electronic state 2. Dissociation 
implies [20]: 

Thus: 

where: 

lim exp( - iH2t/h)](od (0)) = ~ exp( - iI~~t/h) lO ~~, > 
t - + o O  

(67) 

IOoL, > = Of[~«(o)> (68) 

t] ~_ = lim exp(iaq2t/h ) exp(-iI~~t/h) 
l ~ o 9  

(69) 

is the channel Moller operator for channel « [20]. Equation (67) expresses the 
fact that after dissociation (t ~ ~ )  freely moving fragments can show up in the 
different arrangement channels. 

We assume that the light pulse interacts with the molecule in a finite, but 
possibly very long, time tt. Thus, a(t') = 0 for t' > tt. The product distribution is 
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then calculated for t ~ ~ ,  which in practice means that t -  tt > td~~~, i.e., 
t > td~~~ + t» Using Eqs. (65) and (67) we get: 

2 

,~~lim I (E ,  2,n«lz(2~~(t))l 2 =-4-~1 j0 ('`'dt' e - ~ ( e ' -  e)C/~a(t') ~ l ( E ,  2,n«lff~~,)l 2 (70) 

where the second factor is a constant and Eqs. (68) and (69) give: 

~ ' l (E ,  2, n«l~k~~,)12= lim I (E ,  2, n« l exp ( - i I~2 t /h )14~«(O)>l  2 (71) 

Thus, the probabi l i ty  o f  f ind ing  a produc t  in the s tate  I E, 2, n e )  is: 

P(E,  2, ne) = Ic(c°)4h 212 lim~ [(E, 2, n« l e x p ( - i I 1 2 t / h ) I ~ d ( 0 ) > l  2 (72) 

where: 

t tl  c(co) = dt" e - i °« 'a( t ' )  (73) 
30 

and co = (El - E ) /h .  
This result can be considered for different forms of the light pulse. 
In the 6-funct ion limit: 

le(co) 12 = le-C°'» 12 = 1 (74) 

Thus, product  states with various energies can be formed. The energies are 
determined by the energetic width of the asymptotic form of the wave packet. In 
practice, this limit is obtained when the energetic width of the light pulse is much 
larger than the energetic width of the wave packet. In time space this implies, 
t l "~ tdiss. 

In the ew limit: 

Io' le(co) 12 = dt '  e -io~c = 4 sin2(cotl/2)/co 2 (75) 

and 

lim le(co)12/tz = lim 4 sin2(cotl/2)/(co2t,) = 2rer(co) = 2rch6(E l - « )  (76) 
t l - +  cx] t l ~ et3 

Thus, for sufficiently long times, the accessible product states have an energy 
which is determined by the energy of the photon. In practice, this limit is 
obtained when tt » tdi«s. 

An intermediate case given by the Gaussian pulse shape defined in Eq. (54) 
gives: 

(_~)1/4 fort e-iwt'e-et "22 fJ_ le(m) 12 -- dt" = e r f ( w / ~ t  t)  " 
t I 

e-~U2/2 eiO~u du (77) 

For some given 7 and tl large, we get: 

~~ (~Y~~ 
lim lE(co)12 = e -yu2/2 e i~°u du = 2~ \ ~ 2  e-°92/2y (78) 

t l ~  ~ cxD 

which for small ~ approach 2reh(co), i.e., the cw limit. We observe from Eq. (72): 
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The detailed final produet distribution is expressed in terms of the real-time 
dynamics of the molecule as created in the ~-function limit. 
The dynamics is mapped out in the product region. 
Measurement of the final product distribution is accordingly a way to get 
information about the dynamics all the way from the Franck-Condon 
region to the product region. 

The results of this section show in addition that the product distribution is 
affected by the form of the light pulse. A form of control of the outcome of the 
reaction can accordingly be performed in this way. However, the product 
distribution obtained with a 6-function pulse can also be obtained in the cw limit 
if the frequency of the light is varied. In addition, it is clear that at a given 
energy, the form of the light pulse will not affect the relative probabilities of 
obtaining the different (degenerate) channels. Real control of the outcome 
requires, at least, two laser pulses! [25]. 

4.2. Branching between chemically distinct products 

The most detailed information obtainable from photodissociation dynamics is 
the state-to-state probabilities calculated in the previous section. However, often 
less detailed information suffices. This can, of course, be obtained by appropriate 
summation over the detailed state-to-state information- but a more direct 
calculational approach can be available - as illustrated in the present section for 
the branching between chemically distinct products. Thus, we calculate here the 
probability of forming given chemical products irrespective of the particular 
quantum state of the product [10]. 

Assume now that two different arrangement channels are open, e.g.: 

A~C(n) + ~~, -, ?_ + ~C(nl) (79) 
(C + AB(nz) 

For the wave packet dynamics inherent in Eq. (72), this situation implies 
according to Eq. (67): 

lim exp(-iI~=t/h) [~ba(0)} = exp(- iß~t /h)  ]¢òù, } + exp(-iI~2t/h)[¢öùt } (80) 
t ~ ¢ t 3  

where I~ò~,) and ]ff2où,) denote the asymptotic form of the state vector in 
channels 1 and 2, respectively. Now the probability of finding the system in, say, 
arrangement channel 1 in the eigenstate lE, 2, nl) is (Eq. (72)): 

P(«, 2, nl) = c~ lim I(E, 2, nil exp(-iÆ2t/h ) I~bd(0))l 2 
t ~ ¢ t )  

= c£ I(E, 2, nl]~òut(t))l 2 + ~ I(E, 2, n, ll~öut(t)>] 2 

where 

and 

+ cK(Oòu,(t ) lE, 2, nl ) (E ,  2, n, IOo~u,(t) > 
+ c£(~,o2u,(t)lE, 2, nl )(E,  2, nl lOlu,(t)) 

IN oZu, (t)) = exp( - iH 1 t /h) I O òut » 

(81) 

(82) 

10 o2u,(t)) = exp( -- ilQ2~ t/h) ]~b 2où , ) (83) 
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and cg denotes lE(co)[2/4h2. The assumption of no overlap between the eigenstates 
of the two arrangement channels is now introduced, i.e.: 

(E, 2, nl[E, 2, n21 = 0  (84) 

this implies that (E, 2, nllq, o2u,(t))= 0. Thus, the last three terms of Eq. (81) all 
disappear under this assumption. Another way to state the implications of Eq. 
(84) is that interference terms between I~pòu,(t)) and ]~02u,(t)) disappear in the 
probability amplitude associated with the total wave function. 

The probability of finding the system in arrangement channel 1 irrespective 
of the particular quantum state nl and integrated over the total energy E, gives 
the absorption probability into arrangement channel 1 as a function of the 
photon frequency. Using a well-known derivation [26], we get in the cw limit for 
the electromagnetic radiation (Et = he)t + e~): 

Pl(091) =-~ I(E, 2, n~lexp(- i I lä t /h)]~ ,öut )[2~(E-E~)dE 

= 2-h ](E' 2'nl l~bò~')]26(E--E')«E 

= 4h2 n~ ~ «z ei(e'-e~~/"l(E, 2, nllOòu,)] = dE 

l f ~ f :  ° - 4h 2 n l  0o dr e'e'~/"(OOù ` I exp( - ißä r /h )  lE, 2, nl ) (n l ,  2, E ]Oòùt ) dE 

1 f ~  = 4h 2 em"/"(~bòùt [ exp( -iI~lz/h)lO~où, ) dr (85) 
- - o O  

where the completeness of the eigenstates o f /~ l  was used, i.e.: 

~ ~  lE, 2, n l ) (n  I , 2, E I dE = ~? (86) 

Note, in actual calculations what is known is not [Oòù, ) but (compare Eq. 
(80)): 

]~P ö~t (tl)  ) = exp( -- il?I 1 tf/h) l ip öut ) (87) 

where ty is the final propagation time. However: 

= 1 f_~ e .~.o~,lexp(-iI~{v/h)l '~,où«) P1(°9«) ~ 5  dr ie'*/~e,l,l 

=4h  2 ch»m,,/h/,J, 1 I, .«. où,w ) l~, òù,(ti + ~) > 
oO 

1 fo~ - ¢ , o u , ( t ~  + ,))} (881 ~ 2  dv Re{«'e'~/n(~~out(tf )l 1 

A completely equivalent formula can, of course, be derived for products in 
arrangement channel 2: 

P2(fot) = ~-~ & Re{em'~/h(Oöù,(t f)]~b2",(tf + r))} (89) 
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The ratio Pl(o~l)/P2(coz) gives the branching ratio between the two chemically 
distinct products as a function of the photon frequency o~» The two wave 

1 packets [~ou,(ti) ) and [~Zout(tf)) are according to Eq. (80) given as the part of 
the initial state evolving into channels 1 and 2, respectively. They are easily 
identified in pratice [11, 12]. The correlation functions for these wave packets will 
decay to zero very fast due to the translational motion of the fragments. 

The interpretation of the form of Eqs. (88) and (89) is simple. The Fourier 
transform of the autocorrelation function gives the energy spectrum of the state. 

2 For each of the states, [¢lou,(t f ))  and [~pout(t s )), Eqs. (88) and (89), respectively, 
gives the probability of finding the component of the state at energy 
Et---hcot + E~. Thus, the branching ratio, at energy Et = hogt + El, is the ratio 
between the probabilities of finding the component of the states [~Oo~ùt(tf)) and 
[~Oöut(tF)) at this energy. 

5. Semi-elassical description via the Wigner phase spaee representation 

Our intuition about dynamics is strongly connected to classical mechanics. In 
order to get a better feel for the results of Sects. 3 and 4, we now turn to a 
description using classical mechanics for the time evolution. 

A convenient way to make contact with classical mechanics is to use the 
Wigner phase space representation of quantum mechanics [27-29]. This is an 
exact representation of quantum mechanics which has the appealing feature of 
containing many elements which appear to be very close to a classical descrip- 
tion. Thus, operators are represented by functions on phase space and quantum 
mechanical states are represented by the so-called Wigner function [27]. This is 
a function defined on phase space which makes the proper transition from the 
classical description of the state, given by a single point in phase space, to the 
quantum mechanical description where uncertainty relations, etc. have to be 
obeyed. 

The phase space equivalent of the expectation value of an operator is: 

( g,( t) [ Ä [ ~k( t) ) = f f a(p, q)F(p, q, t) dp dq (90) 

where a(p, q) is the classical function corresponding to the operator Ä. a(p, q) is 
defined by: 

a(p, q) = (2) N fùù<q - nlÄIq + n> exp(2ip • n/h) (91) 

and/ '(p,  q, t) is the Wigner function defined by: 

(,)Nr F(p, «, t) = ~ d l l ( q  - n IN(t) )<0(t) [q + n) exp(2ip • q/h) 

= -~ dnq,(q + !1, t)*~(q -11, t) exp(2ip, ll/h ) (92) 

where ~(q, t) = (q I~(t)> and N is number of degrees of freedom. A comparison 
of Eqs. (91) and (92) shows that the Wigner function is the phase space function 
associated with the projection operator, (2z~h)-Nl~0(t)><q~(t) I. 
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The time evolution of the Wigner function is given by: 

F(p, q, t) = exp( -  i£t/h)F(p, q, 0) (93) 

where F(p, q, 0) is the Wigner function at time zero and exp(- i£t /h)  is the phase 
space counterpart to the time evolution operator. /S is the quantum Liouville 
operator: 

[h(~H a OH Ôq) l (94) £ = 2 i s i n  -~ ~qq "~pp Op" 

where H is the classical Hamiltonian corresponding to /~. /2 is a complicated 
operator containing derivatives in p and q of infinite-order. However, the power 
of this equation lies in its potential for making contact with classical mechanics. 
If we at each phase space point neglect all anharmonic terms in the potential 
(i.e., a local harmonic approximation), the quantum Liouville operator reduces 
to the classical Liouville operator and each phase space point evolves according 
to classical mechanics. This approximation has been studied in some detail in the 
literature [30, 31]. Its validity is limited to short times and situations where 
anharmonicities are unimportant. 

Now, let us consider the form of Eqs. (61), (72), and (88) in the phase space 
representation. 

5. I. Total absorption probability 

Using Eqs. (61) and (38) or (63) and Eq. (90) in order to get the phase space 
equivalent of a projection operator, we find [32]: 

P«o,(O)~ ) = (Ó(0) [ exp{i(El - I~2)u/h} du 14~(0)} 
o o  

open  

: ~  2 <~(0)lE,,ù-><e,,n-I+(0)> 
(' ('open 

= ~h (2xh)N h j j ~ Feù'(p, q)F~, q, O)dp dq (95) 

where F(p, q, 0) is the Wigner function associated with [~b(0)) and Fùe'(p, q) is the 
Wigner function associated with the state [Et, n - ) .  

We can consider approximations to the sum over Wigner functions of, 
equivalently, approximations to the phase space equivalent of the operator 
~-+~o exp{i(E~- H2)u/h } du. The approximations derived in [32] are especially 
well suited for fast dissociation processes: 

open  

(2nh) N ~ Fùe'(p, q) = 6(H:(p, «) - Et) + " "  (96) 
n 

Thus, Eq. (95) takes the form: 

P,ot(O~+) = ~  5(H2(p, q) -Et)F~,q,O)dpdq (97) 

The delta function selects those points in phase space which have a classical 
energy equal to Et = hco~ + £1- The probability becomes accordingly the sum 
(integral) of weights (given by F(p, q, 0)) for these phase space points. 
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5.2. Branching between chemically distinct products 

In order to write down the phase space equivalent of Eq. (88), we proceed in the 
same way as for the total absorption [10]. We ger a simple exact phase space 
expression for the partial probability P~ (co~), if we make explicit reference to the 
eigenstates of H~. Thus, we use: 

exp(-iI~l"c/h)=~~)E,  2, n1>(n,,2, E]e-m'/hdE (98) 

and Eq. (88) takes the form: 

1 1 I '  1 P~(~,) = ~  (Ooùt(tf )l ~ exp{i(Ez- It~)z/h} dz[Ooù,(ty ) ) 
O(3 

~ o~n  1 
zc (Oö~t(tf)]E»2, n~)(n~,2, Et[Oout(tf)) 
2h nl 

(' : op«ù 
(2=h)N I I E Fff'(p, ' - q ) rou , (p ,  q, t: ) ap aq (99) 

J d  n l  

where 1 Fou,(t:) is the Wigner function associated with 1~9öu,(t:)) and I'nE] is the 
Wigner function associated with the state lE» 2, nl ). The summation runs over 
all open (degenerate) states at energy El. 

We can now make contact with classical mechanics. First, classical mechanics 
for the time evolution gives: 

1 Fort(P, q, tf) = {exp(-iJLotf/h)F(p, q, 0)} 1 (100) 

where F(p, q, 0) denotes the Wigner function associated with [~b(0)), £o is the 
classical Liouville operator given by the first term in the expansion of the sin[ ] 
function of Eq. (94), and { }1 indicates that we look at the trajectories which 
show up in channel 1. Thus, Eq. (99) with the approximation of Eq. (100), teil 
us that in order to find the probability of having a product in channel 1 at the 
energy Et = h~ot + q ,  we have to run a swarm of trajectories with weights chosen 
according to the initial Wigner function F(p, q, 0). Trajectories which end up in 
channel 1 are subsequently weighted by the function ~n, F~t, and the result is 
obtained as a sum (integral) over all such weights associated with trajectories in 
the swarm. This summation will contain trajectories "oft the energy shell", i.e., 
trajectories with energies different from E» 

Second, we can consider approximations to the sum over final state Wigner 
functions or, equivalently, approximations to the phase space equivalent of the 
operator S_~~ exp{i(E« --I~~)r/h} dr. We use the same analysis which gave Eq. 
(96), this is completely applicable in the present situation when the free translä- 
tional motion of the fragments is fast: 

open 
( 2gh)N L El Fù, (p, q) = 6(HI(p, q) -- Et) + " "  (101) 

n l  

Note that there is no reference to the quantum number nl on the right-hand side 
of this equation. Thus, using the approximations in Eqs. (100) and (101), Eq. 
(99) takes the form: 

P~(ml) = ~ a(I-II~,q)-Et){exp(-i£ot:/h)F~,q,O)}~dpdq (102) 
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The delta function selects those trajectories in channel 1 which have the specified 
energy (Et). The probability becomes accordingly the sum (integral) of weights 
(given by F(p, q, 0)) for these trajectories. Using that energy is conserved for a 
classical trajectory, this probability can also be calculated as the sum of weights 
for trajectories which at t = 0 have the energy Et and which sooner or later will 
move into channel 1. Thus, with the approximations introduced above the 
equation for the probability of  having a fragment in channel 1 at energy El, takes 
a simple and intuitive form. The derivations leading to Eq. (102) have shown the 
nature of  approximations involved in this equation. Therefore, it is possible to 
estimate the validity of this expression and correction terms can be included 
systematically, e.g., by considering higher order terms in Eq. (101) as discussed 
in [32]. 

5.3. Detailed final product distribution 

Equation (72) takes the form: 

P(E, 2, ne) = le(C°) 12 lim I<E, 2, no l exp(-iH2t/h)14~(0) )12 
4h 2 t--,~ 

= leg°) 12 (~tout(l f ) [E, 2, n« ) (E,  2, n« I ~ou,(tf ) ) 
4h 2 

l'(~)l~(2nh)N f f r~ = n~(t,, q)ro#p,  q, tf) dp dq (103) 4h 2 

where Fou,(P, q, t f)  is the Wigner function associated with the state: 

I~bo,,(tf ) ) = exp( - iH 2 tf/h) I q~(0) ) (104) 

and ty is the final propagation time. 
We can now introduce approximations. Classical mechanics for the time 

evolution: 

I'o,t(p, q, tf ) = exp( - i£oty/h)F(p , q, O) (105) 

etc. 
Finally, the origin of the vertical transition idea for positions and momenta 

(classical Franck-Condon principle), used in classical formulations [33, 34] 
should be clear from the discussion above. It is already present in the phase 
space equations before classical approximations are introduced, accordingly it is 
a consequence of  the basic approximations - the adiabatic approximation and 
the use of first order perturbation theory for the light-matter interaction. 
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